A function is a named piece of code, in which it can receive input and return output
You can define a function by:
def my_func():
print("Hello World!")
If you would like to use your function after defining it, just call it by typing the name of the function followed by a pair of parentheses:
my_func()
you can put in a parameter in the parentheses to take in arguments, the arguments can then by accessed inside the function.
None is a special Python placeholder value:
>>> thing = None
>>> if thing:
... print("It's something")
... else:
... print("It's nothing")
# output: It's nothing
# It's False when evaluated as a boolean
but None is slightly different than False:
>>> thing = None
>>> if thing is None:
... print("It's nothing")
... else:
... print("It's something")
...
# It's nothing
You need to use None to distinguish a missing value from an empty value.
the order in which arguments are parsed in matches the corresponding parameter:
>>> def menu(wine, entree, dessert):
... return {'wine': wine, 'entree': entree, 'dessert': dessert}
...
>>> menu('chardonnay', 'chicken', 'cake')
#output {'wine': 'chardonnay', 'entree': 'chicken', 'dessert': 'cake'}
keyword arguments is when you fix a keyword to the corresponding parameter:
>>> menu(entree='beef', dessert='bagel', wine='bordeaux')
# output: {'wine': 'bordeaux', 'entree': 'beef', 'dessert': 'bagel'}
you don’t need to follow the order as to when you need to for positional arguments.
>>> menu('frontenac', dessert='flan', entree='fish')
{'wine': 'frontenac', 'entree': 'fish', 'dessert': 'flan'}
A default value can be set:
def hi(greeting = "Goodmorning")
return greeting
You can then call the function without arguments to use the default value, however - if you do parse in an argument, it will use that argument instead of the default.
Note:
Default parameter values are calculated when the function is defined, not when it is run. A common error with new (and sometimes not-so-new) Python programmers is to use a mutable data type such as a list or dictionary as a default parameter.
def buggy(arg,result =[]):
result.append(arg)
print(result)
>>> buggy('a')
# ['a']
>>> buggy('b') # expect ['b']
# ['a', 'b']
as opposed to running each time with a fresh empty list, the function retains information from the previous call.
this can be fixed by writing the code like this:
>>> def works(arg):
... result = []
... result.append(arg)
... return result
...
>>> works('a')
# ['a']
>>> works('b')
# ['b']
or fixing it by specifying the default value of result to None each time we call the function:
>>> def nonbuggy(arg, result=None):
... if result is None:
... result = []
... result.append(arg)
... print(result)
...
>>> nonbuggy('a')
# ['a']
>>> nonbuggy('b')
# ['b']
You can gather positional arguments by prefixing an aterisk (*) and this will return a tuple
Gathers keywords argument into a dictionary by prefixing double aterisk (**)
Required positional arguments
Optional positional arguments (*args)
Optional keyword arguments (**kwargs)
>>> def print_data(data, *, start=0, end=100):
... for value in (data[start:end]):
... print(value)
the *
indicates all the parameter after it must be passed in as keyword arguments only(name = value)
values of mutable arguments can be changed from within the function,however, it’s good practice to not do this. Instead, document this or return the new value.
docstrings are strings at the beginning of the function.
They can include rich formatting and be displayed with help(), or just help(func_name.doc) for the raw docstring.
you can define a function within a function:
>>> def outer(a, b):
... def inner(c, d):
... return c + d
... return inner(a, b)
this may be done to avoid code repetition
an inner function can acts as a closure. It can access the local variables of the outer function it is defined in.
example:
lambda word: word.capitalize() + '!'
>>> def my_range(first=0, last=10, step=1):
... number = first
... while number < last:
... yield number
... number += step
# it is a normal function but it returns a generator object
Note A generator can be run only once. Lists, sets, strings, and dictionaries exist in memory, but a generator creates its values on the fly and hands them out one at a time through an iterator. It doesn’t remember them, so you can’t restart or back up a generator.
()
instead of square or curly bracketss@decorator_name
before the function instead of manually assignmentexample of decorator function:
>>> def document_it(func):
... def new_function(*args, **kwargs):
... print('Running function:', func.__name__)
... print('Positional arguments:', args)
... print('Keyword arguments:', kwargs)
... result = func(*args, **kwargs)
... print('Result:', result)
... return result
... return new_function
if you try to access AND change a global variable from within a function , an error would occur:
animal = "cow"
def change_and_print_global():
print('inside change_and_print_global:', animal)
animal = 'wombat'
print('after the change:', animal)
#output: UnboundLocalError: local variable 'animal' referenced before assignment
examples:
yourfunction.__name__ # name of the
yourfunction.__doc__ # docstring of the function
async
and await
were added to python in 3.5except exceptiontype as name
you can define your own exceptions by using class:
>>> class UppercaseException(Exception):
... pass
...
>>> words = ['eenie', 'meenie', 'miny', 'MO']
>>> for word in words:
... if word.isupper():
... raise UppercaseException(word)
...
Traceback (most recent call last):
File "<stdin>", line 3, in <module>
__main__.UppercaseException: MO